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Abstract—The balance of pscudomomentum (covariant material, canonical momentum) is estab-
lished in different ways for both pure finite-strain anisotropic efasticity and clectromagnetoelasticity
in the Galilcan approximation for materially inhomogencous solids. This balance law relates
pscudomomentum, Eshelby’s encrgy-momentum tensor, and the material inhomogeneity force. The
relationship with the Hamiltonian canonical formulation of finite-strain clasticity is outlined and
consequences for the evaluation of encrgy release rate via path-independent integrals in clectro- or
magnetoelasticity are drawn, This work, of a fairly general nature, builds on the pioncering results
of the Stanford group around G. Herrmann.,

1 spend money on ... because it is necessary, but to spend it on scicnee, that is pleasant to me.”
George {1 of England, 1738-1820

1. INTRODUCTION

In recent years much attention has been focused on the notion of material forces and their
relationship with the general theory of elastic inhomogeneities. The latter show up in
natural or artificially prepared, layered and composite structures, in media with continuous
distributions of certain types of defects, the theory of brittle fracture, etc. A material force
is, per se, the force which is generated, or produces a work, in a material displacement,
whether finite or infinitesimal. As such, these forces are not the physical forces (essentially
gravitational and electromagnetic forces) to which the classical statement of the principles
of virtual work and power has accustomed us for two centuries (see Maugin, 1980 ; Dugas,
1955). Rather, as clearly understood in the pioneering works of Eshelby (1951, 1970, 1975),
they are those fictitious forces which help one describe the stress-energy concentration at
defects or, more generally, rather abrupt changes in material propertics. Working in a
continuum, here the material manifold .#>, in statics one expects such forces to derive from
a second-order (material) tensor, in fact the Eshelby energy-momentum tensor {Eshelby,
1951). Moreover, in the dynamical case, in the same way as the dynamical (un)balance or
{non)conservation of linear momentum of Newton is a much deeper physical statement
than the equilibrium of forces in statics (the so-called parallelogram of forces; see, e.g.,
Dugas, 1955), to know or show that the relation between material forces and Eshelby’s
tensor is through the dynamical {un)balance or (non)conservation? of so-called pseudo-
momentum is a far-reaching advance because it fosters many direct gencralizations that

t Dedicated to George Herrmann on the occasion of his 70th birthday.
% Parodying Lewis Carroll and his unbirthdays, we may say that unbalances and nonconservations are much
more frequent and fruitful than balances and conservations.
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have been missed in static views. The present work establishes such a dynamical law in both
pure nonlinear anisotropic finite-strain elasticity and electromagnetoelasticity. In this
general (nonrelativistic) electrodynamical framework the true dichotomy between Maxwellian,
all-pervastve, electromagnetic fields (E and B) and essentially material ones (electric
polarization and magnetization) is clearly exhibited. From a different point of view, this
gives us access to an efficient means for evaluating the influence of electromagnetic fields
on fracture properties of brittle materials. The way is also paved for generalizations including
nonsimple materials in the sense of Noll (Truesdell and Noll, 1965) and dissipative ones.

Many of the inittial developments in the subject matter belong to the Stanford group
around George Herrmann (e.g. Golebiewska-Herrmann, 1981, 1982 ; Pak and Herrmann,
1986a.b ; Herrmann and Sosa. 1986 ; Eschein and Herrmann. 1987). This is an occasion to
pay our tribute to this group and its leader. But most of the developments reported
hereinafter are rather the result of our long and patientinvolvement in nonlinear continuum
mechanics, its variational formulation and thermomechanical framework. and the general
electrodynamics of continua (¢.g. Maugin and Eringen. 1977 : Maugin, 1980, 1988 Eringen
and Maugin, 1990). They also lean heavily on works already published or in progress
(Epstein and Maugin. 1990a.b. 1991 : Maugin and Epstein, 1991; Maugin, 1990, 1991 ;
Maugin and Trimarco, 1991a; in press).

Section 2 recalls the results of the purely clastic case. Section 3 introduces maternial
electromagnetic fields. Section 4 presents the balance of pseudomomentum for electro-
magnetic solids. Section 5 relates to the consequences of the former for the brittle fracture
of piezoelectric ceramics or magnetostrictive ferromagnets. Comments and conclusions are
given in Section 6.

2. NOTATION, PURELY ELASTIC CASE

We use the standard notation of nonlincar continuum mechanics (Truesdell and
Toupin, 1960 ; Maugin, 1988) and consider the Green Piola energy-based theory of inhomo-
geneous anisotropic finite-strain clasticity (Ogden, 1984, Scction 4.3). In the absence of
physical body forces, in all regular points X of the material volume V of the material
manifold .#* occupicd by the clustic body at time 1, we have the following local balance
laws of (physical) knear and angular momenta :

5

0= diveT = 3 Pulsuas FT' = TF, ()
(
where
T = OW(F, X)/0F = (W(E. X)/eE)FT, (2)
) xn ‘ e r
pe=poX}v, v= -1, I= g = (Vi)' (3)
Crlx cX

Here x = x(X, ¢) is the direct motion (a time-parametrized diffecomorphism of R* onto itself),
T is the first Piola-Kirchhoff stress tensor (nof a tensor per se but a two-point field), pg is
the (contravariant) physical lincar momentum per unit volume in the reference configuration
Kpg, F is the direct motion gradient (tensorial and thermodynamical dual of T), v is the
physical velocity (with components in the actual configuration K,), p, is the matter density
at Kq. Vg and divg are material gradient and divergence operators, and E is the Lagrangian
finite strain such that

E=HC-Tx). C=F'F, 4)

where C is the Cauchy finite strain and T is the unit dyadic on the material manifold s
of “points™ X. Material inhomogeneiry is directly reflected in the explicit dependence of
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density p, and strain-energy function, W or W per unit volume of K, on X (e.g. the
dependence of elasticity coefficients on X). This dependence here is assumed to be smooth
so that the operations Vgp, and (VeW).p (explicit gradient) are well defined. Further
generalization may involve distribution-like concepts and jumps in po and W as functions
of X at specific surfaces, lines or points in .# >, but this is not dwelt upon here. The following
identities are more or less obvious:

6%’ s Vv, (5)
(V:F)T- 8;: = dive(WTg) — (Vi )erpie 6)
Ve (JFH)=0, V-(JF'F)=0, )
where

F'=(® ' =éX/ox = (VK)T (8)
if 2! = X(x, 1) denotes the inverse motion, F~' the inverse-motion gradient, and V the

spatial gradient, with
Je=detF>0, Ji'=J. 1 =detF " %)

Then we can also define a material velocity ’ﬁcld V such that {compare to (3}, and {5))

_X

0([}: - l)'l'
o ‘

x tixed 01

\%

=VV. (10)

x

Through the chain rule of differentiation one immediately shows that v and V are related
by (note the minus sign)

v=—FV, V=—F"'-v. (1
Pursuing the exploitation of » ™' we also write

C'=(@)'=F"HYF', 12)
the so-called Piola finite strain. As a matter of fact, a consistent approach to static nonlinear
elasticity based on the inverse motion goes back to G. Piola in the 1840s (cf. Truesdell and
Toupin, 1960). This is somewhat dual to the Cauchy—Green description in terms of the

direct motion as noticed long ago by Deucker (1940-41). Then we can state the following
result (Maugin, 1990; Maugin and Trimarco, 1991 ; submitted).

Theorem 2.1. The material inhomogeneity force f™ per unit volume in K,, the dynamic
Eshelby energy-momentum tensor b, and the (covariant, material) pseudomomentum P, at
any regular point X, satisfy jointly the (un)balance law of pseudomomentum

0
0= fmh +d.lVRb“‘ é"{'glxﬁnd, (l3)

with the definitions
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™ = (VaP)ope L = Lpo(X)v = W(F.X). (13
b= —(L1,+FT). (13
P = —TF'pg = py(X)C-V = 2(X.0). (16)

Proof. This is proved directly by multiplying (1) scalarly to the left by F/. integrating
by parts, using the identities (3)-(7) and the definitions (14) and (15). Note that (I14).is a
mere definition which coincides with that of the so-called density of Lagrangian per unit
volume in K. and the last of (16) is trivially proved.

More astutely. we can also use the frame-indifferent (objective) energy H(E, X) to
write b as

b= [H(E.X)= {py(X).2 V|1, -C-S (17)
together with
S = OW/PE, bC = Cb', (18)

and S is the second (symmetric) Piola-KirchhofT stress (the so-called thermodynamical
stress, as it clearly is the thermodynamical dual of E) and (18) expresses the local angular-
momentum balance law in @ complete covarnant material form. Here C plays the role of
deformed metric on 4. Contrary to T, both S and b are true material tensors, the former
being contravariant while b is mixed. Henee (18), may also be stated as: b is symmetric
with respect to C

The following comments are in order. While (1), is a physical balance law (still
projected on the spatial frame), eqn (13) has components in local charts on ./ . Therefore,
it can be generated by a vartation of X «t fixed current point x. Indeed, five methods can
be envisaged to arrive at the statement (13)-(14). These are: (i) the above-given direct
méthod ; (ii) by applying Noether's theorem for X-translations to a variational principle
which primarily expresses the 0 (at fixed X)-variation of the Hamiltonian action

‘C/[ZIIJdIJ‘ rdv, (19a)
{ [

which yields first (1), —sce Nelson (1979, Chap. 4); (i) by computing dircctly (V).
and accounting for (1)—this is performed by Eischen and Herrmann (1987) for hincar
elasticity or Pak (1990) and Maugin and Epstein (1991) in small and finite strain clectro-
elasticity, respectively: (iv) by applying a general invariance involving even nonintegrable
mappings of .#/* onto itsell as done by Epstein and Maugin (1990a,b) but in statics, and
(v) by direct evaluation of the 3, (at fixed x)-variation of the Hamiltonian action

< (Ro] = fd:fu,, ' yde = o/ [x ), (19b)

where, obviously, ¥ " is the “deformed™ of ¥ by the motion, and £ must be expressed in
terms of the inverse motion, i.c.

P = LXCF V) =L, (X)V-CV - WI(F LX) (20)

This variation yields directly (cf. Maugin and Trimarco, 1991 ; submitted)
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0=F‘""+div(B—v®j’)—%i"ﬁm. @)}
where
B= —(J;'¥F-7). TTF'=(FH'T, (22)
T Ly ewiery, (23)
P=J;'"P=pCV, F =y (24)

where B and .7 bear no special names, while 2 is the material pseudomomentum per unit
volume in the current configuration K, : On factorizing out J. in eqn (21) and using (a) the
relation between (0/01)x axea AN (8/08)x5xea- And (b) the identities (7) and (10),, one is led
to (13). Equation (1) then appears as the result of the application of Noether’s theorem for
x-translations to the action (19b). The latter formulation we may call a formulation a la
Piola. Indeed. this is completed by noting that

S=-C ' C', =2;"'@WeC "Y=9T, W=WC " X), 25

a formulation used in general relativistic elustic systems where a canonical projection onto
the material manifold .4 is naturally preferred over a direct-motion description (Maugin,
1971, 1978) as it avoids dcefining a global spatial section of space-time. Furthermore, we
note that

Sxx+F-5x ' =0, (26)

bul two simultancous variations of x and % ', which do not respect this constraint, can be
used to generate (1) and (13) simultancously (cf. Maugin and Trimarco, submitted ; Stumpf
and Le. 1990). Itis not difficult to show that (21) is none other than the sccond of Hamilton's
canonical equations,

=_‘i£ A =P N-J ' (27)
x tixed (Sx‘ ' ’ i

P
ot

where A is the Hamiltonian density and 3/0X denotes the variational (functional) material
gradient (Maugin and Trimarco, 1991) if (10), is recognized as the first one:

X| oA 2
e[ x fixed B 5"7 (b )

The reader will find in other works (cf. Maugin and Trimarco, 1991 ; submitted) applications
of (13) and (18)-(20) to the evaluation of the encrgy-release rate (J-integral) in brittle
fracture and the conception of a fracture criterion via a variational inequality. All that
nceds to be noted for the moment is that the total material inhomogeneity force F ™ for
a control volume ¥, cut by a material singular surface Z. is given by the integral

.‘7/_ wnh :i:cf J finh d V, (29)
V-

and this. in theory, can be evaluated by using (13) and generalized versions of Stokes’
divergence and Reynolds’ transport theorems (Maugin and Trimarco, 1991) even if V is
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mobile with respect to £ (note the inversion of the “thought process™ as it is £ which is
fixed in this description!).

3. MATERIAL ELECTROMAGNETIC FIELDS

Maxwell’s equations in a magnetized and electrically polarized material are usually
expressed in a fixed frame, R, called the Laboratory frame and, by relativists and those
interested in dynamics. in a co-moving frame, R¢(X. 1) at time ¢ (see Maugin, 1988, Chap.
3: Eringen and Maugin, 1990, Chap. 3). They can as well be formulated entirely on the
material manifold .#" as shown initially by Walker et al. (1965) and McCarthy (1968)—
see also Lax and Nelson (1976) and others (Nelson. 1979 ; Maugin, 1981 ; Ani and Maugin,
1989). The clues to a good material formulation of Maxwell's equations (in maiter, but this
is a Zen-like remark) are (i) to notice that magnetic induction, electric displacement and
electric polarization are contravarians vectors (of which the first is axial) to which divergence
operators apply, while electric and magnetic fields and magnetization are covariant vectors
{of which the last two are axial) to which one normally applies the curl operation. Further-
more the last three fields must be considered in a co-moving frame to start with (cf. Maugin,
1988. Chap. 3). Let B, D. P, E, H be the first five ficlds in R, and .4 be the magnetization
per unit volume in Re(X, ¢). Then in a Galilean approximation one introduces the following
material electromagnetic fields (¢ is the velocity of hight in vacuo)

%:J‘L.{F'X'B' ®=J[.'F~1'D. rI=JF{F—!'P,

! 1
M=.4F €E=EF- Vx¥8 iy:l*l'ﬂ:—f-(:\/x@. (30)

4

Then the classical (current-configuration) formulation of Maxwell's equations in non-
dissipative, charge-free matter, i.e. (with Lorentz-Heaviside units)

B

VxE+ " =0 V'B=0.
:
12D

VxH-~ . =0, V-D=0,
¢ !

l
H=B-~M, D=E+P, J[:M-}-;vxP 3

transforms to the material framework as

1B
Vex €+ A-(;' =0V, 8=0
¢ g
10D
VexH— - = =0, VgD=0,
¢ x
H=J7'C-B-M, D=JC '-E+I, (32)
where
- - 1
@=(£'+~!-\/><‘B=E'F, ‘B=‘B—l\/x(5'=JFlF“‘~<B—vaE>. (33)
¢ ¢

Clearly, from (3.2),; there follows the existence of potentials ¢ and U (in the material
description ; cf. Nelson, 1979, pp. 406-407) such that
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G=<VR(p+1§—‘!llx> B =V xMN (34)
cct

Let
Z0.(E.B) = {E*—B°) (35)

be the Lagrangian of free (Maxwell) fields either in a vacuum or in a body per unit volume
of the current configuration K,. At points where this expression is meaningful, we have:

Lemma 3.1. There holds the identity

= G —di T. (2 1P _(i ayem
0 - VR—t,em d‘VR[‘F (( '!un/([]:)]+(q,( a\/

)- Lom = I L - (36)

Proof. This is proved by direct computation of V%, (see Maugin and Epstein, 1991,
“for the special case of electroelastics, but the general case is treated similarly).
At those points X we can also write, on account of (30) and (33),

L. (€ B.C)="'JEC '"-€-1J,'"B-C-B. (37)

To account for material incrtia, elasticity and electromagnetic interactions between matter
and the Maxwellian fields, we must complement (37) with the following general *“matter-
plus-interactions™ Lagrangian per unit volume in Kg:

Lu(v,F.E B X) = lpyw’ - W(F.EB:X) (38a)
or

Zu(VF €8 X) = L (X)V-C- V- (T EB; X). (38b)

4. BALANCE OF PSEUDOMOMENTUM IN ELECTROMAGNETOELASTICITY

The algebra of the following developments is much facilitated by the fact that many
of the intermediate computations were, in effect, carried out by Nelson (1979) in his
monograph, although for a different purpose. We shall not repeat his proofs. Some of our
results have been partially enunciated in short notes (Maugin, 1990, 1991). Here they are
corrected where necessary. First we have the:

Theorem 4.1. Maxwell's equations (32); 4 and the balance laws of physical linear and
angular momenta

. . . . d . .
0 =dive(T*+T"+P ® p'/p) — 5,(px+p2). TEF™ = F(T)T, (39)

follow from the straightforward J (at fixed X)-variation, accompanied by proper variations
d¢ and o, of the Hamiltonian action:

(%, E,B] = Jdtj (Lo +ZLy) dV, (40)
! 12

with the following definitions:
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TE=CWicF, TP=JF"'t", P=F " p.. ph=Jp" (41)

where
o1 )
p'=_ExB t'=EQE+B@®B-{(E'+B)L (42)

The long proof of this shall be given elsewhere (Maugin and Trimarco, in press).
Simultancously. applying Noether’s theorems for X-translations to the variational principle
of the previous theorem, we obtain the following lemma.

Lemma 4.2, For a nondissipative, charge-free, inhomogeneous, anisotropic electro-
magnetoelastic body in finite transformation, the following (un)balance of pseudomomen-
tum holds true:

. é
0= fmh +legb"— a y"xﬁ,‘cd\ (43)

where ™ is defined as in eqn (4) and the electromagnetomechanical generalizations of b
and 2, b and #" arc given by

b = (W~ lp,w)l~C*S, (44)
|
;y'=y+»~ﬂx!B. (45)
.
where
S=S'-C ' E€@N+C" ""M®®B, (40)

together with the constitutive equations
St = WOk, M= —0W/C€, M =3aWwioB, W= W(E EB;X). (47)
where the objectivity requirement has been applied to the strain-energy function W.

Proof. The long proof, to be given elsewhere (Maugin and Trimarco, in press),
follows the one indicated by Nelson (1979, Chap. 8) in the absence of magnetization and
material inhomogeneities. Essential in the inhomogeneous case is the identity (36) which
has to show ultimately that the free Maxwellian fields cannot contribute, just by themselves,
to the statement (43) and the definitions (44) and (45). That is, contrary to the physical
expressions (39) which contain free-field contributions via the expressions (42)-—pure {ree-
ficld electromagnetic momentum and Maxwell stresses—the material expressions (44) and
(43) do not contain such contributions. An identity of the type of (36) was missed in the
original electrostatic derivation of Pak and Herrmann (1986a), resulting in the presence of
a superfluous, identically vanishing, group of terms.

Remarks. (a) First we note that, formally, b’ has the same expression as in pure
clasticity except that S admits a canonical decomposition {46) typical of electromagnetic
bodies (¢f. Maugin and Eringen, 1977). (b) The result (43) with £"* = 0 (but with additional
magnetic terms) is none other than an expression obtained by Nelson (1979, p. 159) but of
which the importance was only recently discovered by that author (Nelson, 1990) in
connection with the notion of psewdo-momentum or canonical momentum after the
enlightening remarks of Peierls (1985). (c) The variational origin of the expression of b’ is
highlighted by noting that (44) also reads in components as
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oW W oW
b’ = [W(C, & B:X) 1oV C-VI§/ -2 5 ~ & - — 7 B”. (49)

(d) Both physical and pseudo electromagnetic linear momenta (in matter) are neither
Minkowski’s nor Abraham’s proposals. In a rigid solid, however (F =1, C =1), the sum
of our two expressions provides Abraham’s momentum (D x B)/c. (¢) Legendre trans-
formations can be performed for the dependence of energy W on electromagnetic quantities
(cf. Maugin, 1991). (f) In theory at least, (43) can be derived by any of the five methods
mentioned in Section 2. In particular, it should be shown to be the direct consequence of
the § -variation of the Hamiltonian action

J{'[x, t] = J‘dl J' JF I(Zrm'f'j,u) de. (49)

This. as well as the corresponding Hamiltonian canonical formulation, is left for further
studies.

5. APPLICATION TO BRITTLE FRACTURE

Path-independent integrals of the J-integral type have been proposed in electroelasto-
statics by several authors (Pak and Herrmann, 1986a.b; Pak, 1990; McMeeking, 1990
Parton and Kudryavtsev, 1988 ; Maugin and Epstein, 1991). This can also be achieved in
all generality by starting from the basic law (43). As in the purely elastic case one has to
take notice of the following demonstrable theorems:

% d
J ; .fr|de=.vJ PV w(N-”IJ)dS+-[ [#®%]-Nds, (50a)
[ ()l ot V-% V- L

f divg de=j b'NdS—j IIb}]'NdS—I dL[IimJ b'Ndr], (50b)
V£ oy -1 b oz r-olr

where V is a regular material volume containing a flattened disk crack X of contour ¢Z,
and moving with spatially uniform velocity % with respect to Z, I' is an open contour in
the cross-section of the torus-like tube around dZ (Fig. 1a), and [...] denotes the jump of
its enclosure. By letting V shrink to £ and noting that the volume term containing the
pseudomomentum will contribute zero in this limit, we obtain from (29) the following
result:

0T - r
where Jr is path-independent (as readily checked). In quasi-statics, this reads
Jr =jr[WN—C-(SE'N)—(VW)(“'N)—-M(B'N)]dr. (52)

For a flat, straight, through-crack (0Z is then perpendicular to the plane of Fig. 1b), and
considering the limit of small strains for the electroelasticity of brittle ceramics, eqns (51)
and (52) produce the electroelastic J-integral by
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X3

3%
b}
Fig. L. (a) Disked crack inoa nonlincar honmgcnc:us clastic medium. (b) Through straight planc

crack.

J = lim (F"™Mee)) = lim ﬁ (WN, ~T§; qu}z)dr, (53)
with

N, =N-¢,, 0/0X =¢, -V, (54)
T=N-Sf Q=N-TI, (55)

where u s the elastic displacement. ¢, is a unit vector in the direction of extension of the
crack (J may then be called the crack-extension force ; see Fig. [b), T is the traction vector,
and @ is the surface polarization along the contour I'. The small-strain limit for the
mechanical part in passing from (52) to (53) is well explained in Casal (1978). Note that
in the above approximation W is at most quadratic in the strain; however, high-order
nonlinearities in pure clectric properties are still allowed and electrostriction and higher-
order electroelastic effects are still contained in W, T and Q, via S* and [T (seec Maugin,
1985, for these effects in ceramics and ferroelectrics). The quasi-magnetostatic case of
nonpolarized magnetostrictive brittle magnets in a magnetic field is deduced along similar
lines from (52). As we know from many works (Rice, 1968 ; Fletcher, 1976; Bui, 1978;
Gurtin and Yatomi, 1980 ; Eschein and Herrmann, 1987 ; Maugin, in press), the J-integral
is related to the energy release rate and this, in turn, is connected to the material toughness
and stress intensity factors at crack tips. Thus a brittle fracture criterion can eventually be
proposed which will account for electromagnetic effects (compare Maugin and Trimarco,
submitted, and Stumpf and Le, 1990. for the purely mechanical case). A crack propagation
criterion can be devised on the same basis but relying on a variational inequality rather than
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a vaniational principle (ibid.). For lack of space we shall not pursue here these exciting
developments.

6. CONCLUSION: PROSPECTS

It is difficult to go further in complexity than above in the framework of nondissipative
simple materials (those which involve only the first gradient F or F~'). However, we would
like to point to three generalizations of interest if some of these restrictions are released :
(i) as already noted the introduction of material gradients in the generalized function
(distribution) sense will allow one to account for abrupt changes in material properties;
(if) on noting that most of the above developments (especially those using the inverse-
motion description) strictly pertain to a true field theory (with a variational basis), higher-
order material gradients can be accounted for, such as in second-grade elasticity, practically
with no additional difficulty (see. e.g. Epstein and Maugin, 1991, for such extensions which
will allow for continuous distributions of disclinations) ; and finally (iii) if the medium
considered is basically elastic but also dissipative then the direct approach used in passing
from (1) to (13) is still feasible with a more general definition of £™ that will account for
the explicit dependence of the pseudopotential of dissipation (see Maugin, in press, for this
notion) on X; e.g. dependence of viscosity coeflicient, hardening modulus and yield stress
on X (Maugin, in preparation). Then the notions of global inhomogeneity force # ™ and
J-integral can be gencralized to these nontrivial cases. This will be developed at length
elscwhere.
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